数 学 活 用 能 力 検 査 Mathematics Academic Performance Test

注 意

- 1 問題は 1 から 4 までです。日本語の問題は 1 ページから 4 ページまでです。
- 2 日本語の問題と英語の問題は同じ内容です。
- 3 検査時間は 60 分です。
- 4 声を出して読んではいけません。
- 5 **必ず出願時に申請した言語で答えなさい**。それ以外の言語で答えた場合は、 採点の対象となりません。
- 6 受検番号を解答用紙の決められた欄に記入しなさい。
- 7 答えに分数が含まれるときは、それ以上約分できない形で表しなさい。
- 8 答えに根号が含まれるときは、根号を付けたまま、分母に根号を含まない形で表しなさい。また、根号の中は最も小さい整数にしなさい。
- 9 答えを直すときは、きれいに消してから、新しい答えを書きなさい。
- 10 答えは全て解答用紙の決められた欄に明確に記入し、解答用紙だけを提出しなさい。

Instructions

- 1 Answer all questions in sections 1 to 4. The mathematics test written in English is from page **five** to page **eight**.
- 2 The contents of both tests are the same in Japanese and English.
- 3 The examination duration is **60** minutes.
- 4 Do not read anything aloud.
- 5 **Be sure to answer in the language for which you applied.** If you answer in other languages, your answer sheet will not be marked.
- 6 Write **your examinee number** in the designated space on the answer sheet.
- 7 If any fractions appear in a solution, write the solution in a fully simplified form.
- 8 If any radicals appear in a solution, write the solution with the radicals but do not include any radicals in the denominator. Additionally, leave the smallest possible integer inside the radicals.
- 9 If you change answers, erase the original answers neatly and write the new answers.
- Write clearly all your answers in the designated spaces on the answer sheet and submit only the answer sheet.

1 次の各問に答えよ。

〔問 1〕
$$\sqrt{6} \left(\sqrt{2} - \sqrt{3}\right) - \frac{2}{\sqrt{2}} \left(\sqrt{3} + \sqrt{6}\right) + \sqrt{18}$$
 を計算せよ。

〔問 2〕 連立方程式
$$\begin{cases} 3(x+y) + 5(x-2y) = -12 \\ \frac{x-y-5}{3} + \frac{2x-y+1}{6} = \frac{1}{2} \end{cases}$$
を解け。

- 〔問 3〕 二次方程式 $(x-5)^2+10x=50$ を解け。
- [問 4] 点 P が数直線上の原点にある。硬貨を投げ、表が出た場合は点 P が正の方向に 1 進み、 裏が出た場合は負の方向に 2 進む。

硬貨を3回投げたとき、点Pが原点にある確率を求めよ。

ただし、硬貨の表と裏の出方は、同様に確からしいものとする。

〔問 5〕 右の図で、点 O は、線分 AB を直径とする半円の中心である。

 \widehat{AB} 上にある点を P とし、点 A と点 P を結ぶ。 解答欄に示した図をもとにして.

∠BAP = 15°となる点Pを,

定規とコンパスを用いて作図によって求め,

点Pの位置を示す文字Pも書け。

ただし、作図に用いた線は消さないでおくこと。

2 右の**図1**で、点 O は原点、曲線 ℓ は関数 $y = 2x^2$ のグラフ、曲線 m は関数 $y = \frac{1}{4}x^2$ のグラフを表している。 点 A は、曲線 m 上にあり、x 座標は t(t>0) である。 点 B は、曲線 m 上にあり、点 A とは異なる点で、y 座標は点 A の y 座標と等しい。

点 C は、曲線 ℓ 上にあり、x 座標は点 A の x 座標と等しい。 点 D は、曲線 ℓ 上にあり、x 座標は点 B の x 座標と等しい。 点 A と点 B、点 A と点 C、点 B と点 D、点 C と点 D を それぞれ結ぶ。

原点から点(1,0)までの距離、および原点から点(0,1)までの距離を、それぞれ1 cm として、次の各間に答えよ。

「問 1] t = 4 のとき、線分 BD の長さは何 cm か。

[問2] 右の図2は、図1において、

点 B と点 C を通る直線を引いた場合を表している。 t=2 のとき、点 B と点 C を通る直線の式を求めよ。

〔問3〕 右の図3は、図1において、

四角形 ACDB が正方形の場合を表している。 t の値を求めよ。

ただし、解答欄には、答えだけでなく、 答えを求める過程が分かるように、途中の式や 計算なども書け。

 $oxed{3}$ 右の $oxed{3}$ 右の $oxed{3}$ 1 で、点 O は、線分 AB を直径とする円の中心である。 \widehat{AB} 上にあり、点 A 、点 B のいずれにも一致しない点を C とし、点 A と点 C 、点 B と点 C をそれぞれ結ぶ。

点 C を含まない \widehat{AB} 上にあり、点 A 、点 B のいずれにも 一致しない点を D とし、点 A と点 D 、点 C と点 D をそれぞれ結び、線分 AB と線分 CD との交点を E とする。

次の各間に答えよ。

〔問 1〕 点 B と点 D を結んだ場合を考える。 \angle ABC = 22° のとき、 \angle BDC の大きさは何度か。

〔問 2〕 右の図2は、図1において、

点 D と点 O を通る直線を引き、円 O との交点のうち 点 D と異なる点を F、線分 B C との交点を G とし、 B C \perp D F の場合を表している。 次の (1), (2) に答えよ。

- (1) △ ABC △ OBG であることを証明せよ。
- (2) 点Cと点Fを結んだ場合を考える。AC=2 cm. AO=3 cm のとき、線分CFの長さは何 cm か。

4 右の図1で、立体ABCD-EFGHは、

AB=5 cm, AD=2 cm, AE=3 cm の直方体である。 辺 CD上にある点を P とする。 次の各間に答えよ。

[問1] 頂点Fと点Pを結んだ場合を考える。DP=4 cm のとき、線分FP の長さは何 cm か。

[問2] 右の図2は、図1において、

頂点Aと点P、頂点Eと点P、頂点Hと点Pをそれぞれ結んだ場合を表している。

 $\angle APD = 45^{\circ}$ のとき、

立体 P-AEHD の体積は何 cm³ か。

〔問3〕 右の図3は、図1において、

3点A, G, Pを通る平面と辺EFとの交点を Qとし、頂点Aと点P, 頂点Aと点Q, 頂点Gと点P, 頂点Gと点Qをそれぞれ結んだ 場合を表している。

四角形 AQGP がひし形となるとき、四角形 AQGP の面積は何 cm² か。ただし、解答欄には、答えだけでなく、答えを求める過程が分かるように、途中の式や計算なども書け。

1 Answer the following questions.

(Question 1) Simplify
$$\sqrt{6} (\sqrt{2} - \sqrt{3}) - \frac{2}{\sqrt{2}} (\sqrt{3} + \sqrt{6}) + \sqrt{18}$$

Question 2 Solve
$$\begin{cases} 3(x+y) + 5(x-2y) = -12 \\ \frac{x-y-5}{3} + \frac{2x-y+1}{6} = \frac{1}{2} \end{cases}$$
 for x and y .

[Question 3] Solve the quadratic equation $(x-5)^2 + 10x = 50$ for x.

[Question 4] Point P is at the origin of a line number. A fair coin is tossed. If the coin is tossed and the outcome is a "head", point P moves towards the positive direction by one. If the coin is tossed and the outcome is a "tail", point P moves towards the negative direction by two.

Find the probability that point P is at the origin after the coin is tossed three times.

[Question 5] Figure on the right shows a semicircle with point O as its center and line segment AB as its diameter.

Let P be a point on arc AB and connect points A and P.

On the answer sheet, construct a point P such that angle BAP is 15° and label the point with letter P.

Use a ruler and a compass to construct the answer.

Do not erase the lines you have drawn in the process of your construction.

2 Figure 1 on the right shows the graph where curve ℓ represents the function $y = 2x^2$ and curve m represents the function $y = \frac{1}{4}x^2$. The point O represents the origin. Let A be a point on curve m with x-coordinate

Let A be a point on curve m with x-coordinate of t (t > 0).

Let B be a point on curve m that is distinct from point A and has the same y-coordinate as point A.

Let C be a point on curve ℓ and has the same x-coordinate as point A.

Let D be a point on curve ℓ and has the same x-coordinate as point B.

Connect points A and B, points A and C, points B and D, and points C and D.

Assume the distance between the origin and the point (1,0), and the distance between the origin and the point (0,1), are both 1 cm.

Answer the following questions.

[Question 1] Find the length of line segment BD when t = 4.

[Question 2] Figure 2 on the right shows the case in Figure 1, where a line which passes through points B and C is drawn.

Find the equation of the line that passes through points B and C when t = 2.

[Question 3] **Figure 3** on the right shows the case in **Figure 1**, where quadrilateral ACDB is a square.

Find the value of t.

You must show your working in the answer space.

Figure 1

Figure 2

Figure 3

Figure 1 on the right shows a circle with center O and line segment AB as its diameter.

Let C be a point on arc AB and is distinct from points A and B. Connect points A and C, and points B and C.

Let D be a point on arc AB which does not contain point C and is distinct from points A and B.

Connect points A and D, and points C and D.

Let the intersection of the line segments AB and CD be E.

Answer the following questions.

[Question 1] Consider the case where points B and D are connected. Find the magnitude of angle BDC when angle ABC = 22° .

[Question 2] Figure 2 on the right shows the case in Figure 1, where a line which passes through points D and O is drawn. Let the intersection of the line and the circle which is distinct from point D be F, and the intersection of the line and line segment BC be G.

Consider the case where line segment BC is perpendicular to line segment DF.

Answer (1) and (2).

- (1) Prove triangle ABC is similar to triangle OBG.
- (2) Consider the case where points C and F are connected.Find the length of line segment CF when AC = 2 cm and AO = 3 cm.

A E O B

Figure 2

F

C

G

B

Figure 1 on the right shows a solid ABCD-EFGH which is a cuboid with sides AB = 5 cm, AD = 2 cm and AE = 3 cm.

Let P be a point on side CD.

Answer the following questions.

[Question 1] Consider the case where vertex F and point P are connected.

Find the length of line segment FP when DP = 4 cm.

[Question 2] Figure 2 on the right shows the case in Figure 1, where vertex A and point P, vertex E and point P, and vertex H and point P are connected.

Find the volume of solid P-AEHD when angle APD = 45° .

Figure 1

Figure 2

[Question 3] Figure 3 on the right shows the case in Figure 1, where Q is the intersection of a plane that passes through points A, G and P and side EF.

Connect vertex A and point P, vertex A and point Q, vertex G and point P, and vertex G and point Q.

Find the area of a quadrilateral AQGP when its shape is rhombus.

You must show your working in the answer space.

Figure 3

